
INTERPROCESS

COMMUNICATION

INDEX

 Race Condition

 Critical Section Problem

 Mutual Exclusion

 Hardware Approach to Mutual Exclusion

Course Outcomes (COs)

CO Explanation

CO1
Explain basic operating system concepts such as overall architecture,

system calls, user mode and kernel mode.

CO2
Distinguish concepts related to processes, threads, process scheduling,

race conditions and critical sections.

CO3
Analyze and apply CPU scheduling algorithms, deadlock detection and

prevention algorithms.

CO4
Examine and categorize various memory management techniques like

caching, paging, segmentation, virtual memory, and thrashing.

CO5 Design and implement file management system.

CO6
Appraise high-level operating systems concepts such as file systems, disk-

scheduling algorithms and various file systems.

Some Glimpses of Previous Lecture

 Processes and its types- Independent and Cooperating Processes

 Interprocess Communication

 Methods of Interprocess Communication

i. Message Passing Model

ii. Signals

iii. Dynamic Data Exchange

iv. Object Linking and Embedding

Objective and CO

Objective CO

Understanding the concept of race

conditions, critical section, mutual

exclusion and various solutions to

mutual exclusion.

CO2-Distinguish concepts related to

processes, threads, process scheduling,

race conditions and critical sections.

Race Condition
• Race condition- It is a condition when several processes

access and manipulate the same data at the same time.

• Race conditions occur among processes that share
common storage.

• Each process can read and write on this shared common
storage.

• Race conditions can occur in poorly designed systems.

• Race conditions can be extremely difficult to handle due
to improper synchronization of the shared memory
access.

Race conditions with threads can arise from a variety of causes,

including (but not limited to):

• Two threads try to modify the same global variable at the same

time.

• Data exists when a thread is created but becomes invalid when

the thread tries to access it later.

Critical Section
• A section of code or set of operations in which a process may

be changing the shared variables, updating a common file or a
table etc. is known as critical section of that process.

• The critical section problem is used to design a set of protocols
which can ensure that the Race condition among the processes
will never arise.

• When one process is executing in its critical section, no other
process is to be allowed to execute in its critical section. That
is, no two processes are executing in their critical sections at
the same time.

Critical Section Problems

• Critical section is a code segment that can be accessed by

only one process at a time. Critical section contains shared

variables which need to be synchronized to maintain

consistency of data variables.

In the entry section, the process requests for entry in
the Critical Section.

Any solution to the critical section problem must satisfy three
requirements:

• Mutual Exclusion : If a process is executing in its critical
section, then no other process is allowed to execute in the
critical section.

• Progress : If no process is executing in the critical section
and other processes are waiting outside the critical section,
then only those processes that are not executing in their
remainder section can participate in deciding which will
enter in the critical section next, and the selection can not
be postponed indefinitely.

• Bounded Waiting : A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted.

Mutual Exclusion

• Mutual exclusion is a property of process

synchronization which states that “no two processes can

exist in the critical section at any given point of time”.

• Any process synchronization technique being used must

satisfy the property of mutual exclusion, without which it

would not be possible to get rid of a race condition.

To understand mutual exclusion, let’s take an example.

Example:

In the clothes section of a supermarket, two people are

shopping for clothes.

Boy A decides upon some clothes to buy and heads to the

changing room to try them out. Now, while boy A is inside

the changing room, there is an ‘occupied’ sign on it –

indicating that no one else can come in. Girl B also want to

use the changing room so she must wait till boy A is done

using the changing room.

Once boy A comes out of the changing room, the sign on it

changes from ‘occupied’ to ‘vacant’ – indicating that another

person can use it. Hence, girl B proceeds to use the changing

room, while the sign displays ‘occupied’ again.

The changing room is nothing but the critical section, boy A

and girl B are two different processes, while the sign outside

the changing room indicates the process synchronization

mechanism being used.

Significance of Critical section, Race

Condition and Mutual Exclusion
• Critical sections prevent thread and process migration between processors and

the preemption of processes and threads by interrupts and other processes and

threads.

• Race conditions are considered a common issue for multithreaded

applications. They occur when two computer program processes, or threads,

attempt to access the same resource at the same time and cause problems in

the system.

• Mutual exclusion reduces latency and busy-waits using queuing and context

switches.

Synchronization Hardware

or Hardware Solutions
There are various hardware based methods that can be used to solve

the critical section problem-

1) Interrupt Disabling

2) Hardware Instructions

Interrupt Disabling
 Once the process has gained the control of CPU, it can only loose that control

when it invokes an operating system service or when it is interrupted.

 The best solution for mutual exclusion is to have each process disable all interrupts
just entering after entering its critical section.

Fig.1: Disabling Interrupts

Disadvantages of Disabling

Interrupts
 It works only in single processor environment.

 Performance of the system is degraded, as multiprogramming is

not utilized during the execution of critical section.

 A processor waiting to enter its critical section could suffer from

starvation.

 This approach will not work in multiprocessor architecture.

Hardware Instructions
• Synchronization hardware i.e., hardware-based solution for the

critical section problem introduces the hardware instructions that

can be used to resolve the critical section problem effectively.

• Many machines provides several instructions that can read, modify

and store a memory word atomically.

• The most commonly used instructions are-

1) Test and Set Instruction

2) Compare and Swap

3) Exchange Instruction

1) Test And Set Hardware

Instruction
• This instruction provides the action of testing the variable and

consequently setting it to a stipulated value.

• The hardware-based solution to critical section problem is based on a

simple tool i.e., lock.

• The solution implies that before entering the critical section the process

must acquire a lock and must release the lock when it exits its critical

section. Using of lock also prevent the race condition.

• The Test And Set hardware instruction is atomic instruction. Atomic

means both the test operation and set operation are executed in one

machine cycle at once.

Test And Set Hardware

Instruction

• The Test And Set instruction can be defined as in the code below:

do {

while (TestAndSet(&lock));

// critical section

lock = FALSE;

// remainder section

} while (TRUE);

How Mutual exclusion is achieved?

 Mutual exclusion is met because if the first process is in critical

section, it sets the value of lock to true.

 Thus, the second process will have a true value for test and set

instruction and therefore, it will not come out of the while loop

till the lock is set to false by the first process executing its critical

section.

2) Compare and Swap

Instruction
• Like Test And Set instruction the swap hardware instruction is

also an atomic instruction with a difference that it operates on

two variables provided in its parameter.

• The structure of swap instruction is:

do {

key = TRUE;

while (key == TRUE)

Swap(&lock, &key);

// critical section

lock = FALSE;

// remainder section

} while (TRUE);

3) Exchange

 This instruction exchanges the contents of a register with that of a

memory location.

 In this procedure, a shared variable is used that is initialized to 0.

 The process that may enters its critical section is one that finds

this shared variable equal to 0.

 It then excludes all other processes from the critical section by

setting this variable to 1.

 When the process leaves its critical section it resets its shared

variable to 0, allowing other process to gain access to its critical

section.

Advantages of Hardware Instruction

Approach

• Hardware instructions are easy to implement and improves the

efficiency of the system.

• Supports any number of processes may it be on the single or multiple

processor system.

• With hardware instructions, you can implement multiple critical

sections each defined with a unique variable.

Disadvantages of Hardware

Instruction Approach

• Processes waiting for entering their critical section consumes a lot of

processors time which increases busy waiting.

• As the selection of processes to enter their critical section is arbitrary,

it may happen that some processes are waiting for the indefinite time

which leads to process starvation.

• Deadlock is also possible.

Fig.2: Busy waiting leads to wastage of CPU cycles

References

• Operating System Concepts by Charanjeet Singh

• https://www.geeksforgeeks.org/introduction-of-process-

synchronization/

• https://archive.nptel.ac.in/courses/106/106/106106144/

• https://archive.nptel.ac.in/courses/106/106/106106144/

• https://youtu.be/qMQsd7Iy5jo

http://iit.qau.edu.pk/books/OS_8th_Edition.pdf
http://iit.qau.edu.pk/books/OS_8th_Edition.pdf
http://iit.qau.edu.pk/books/OS_8th_Edition.pdf
http://iit.qau.edu.pk/books/OS_8th_Edition.pdf
http://iit.qau.edu.pk/books/OS_8th_Edition.pdf
http://iit.qau.edu.pk/books/OS_8th_Edition.pdf
https://youtu.be/qMQsd7Iy5jo

Interprocess
Communication

INDEX

 Objective and Cos

 Types of Processes

 Cooperating Processes- Why?

 Interprocess Communication

 Methods of Interprocess Communication

 Message Passing

 Signals

 DDE

 OLE

Objective and COs

Objective CO Explanation

Understanding the types

of various processes and

how they communicate

with each other while

executing in the system

CO2 Concepts related to

processes, threads, process

scheduling, race

conditions and critical

sections.

Types of Processes

The processes are classified into two categories-

 Independent Process- Its an process that does not share its

data with another process.

 Cooperating process- It is a process that shares data with

the other processes in the system.

Cooperating Processes- Why?

Reasons for using cooperating processes are-

 Information Sharing

 Computational Speed up

Interprocess Communication

 It is a facility provided by an operating system via which

cooperating processes can communicate with each other.

 It is useful in distributed environment.

 Example- Chat program used in WWW.

Methods for Interprocess Communication

Following are the methods for establishing the interprocess

communication-

 Message Passing

 Signals

 Dynamic Data Exchange (DDE)

 Object Linking and Embedding (OLE)

Methods for Interprocess Communication

1) Message Passing Model- It is a collection of information

that may be exchanged between a sending and receiving

process.

Figure-1 is showing the format of the message.

Methods for Interprocess Communication

 Processes generally sends and receives the messages by

using send and receive primitives.

Send(receiver process, message);

Receive(sender process, message);

 Two system calls are used for message transfer among

processes-

msgsnd()- It sends a message using message queue.

msgrcv()- It receives a message using message queue.

Methods for Interprocess Communication

1.1 Implementation Issues in Messages- There can be two

major implementation issues that are-

a) Naming of sender and receiver processes

b) Message delivery protocols

Methods for Interprocess Communication

a) Naming- Processes that want to communicate with

each other must have a way to refer to each other. And

these ways can be direct or indirect.

Naming

Direct
Communication

Indirect
Communication

Methods for Interprocess Communication

Fig.2: Direct Communication

Methods for Interprocess Communication

Fig.3: Indirect Communication

Methods for Interprocess Communication

b) Message Delivery Protocols-Protocols are the set of

rules that determine the message data formats and actions

of processes while sending and receiving.

Message
Delivery
Protocol

Blocking
Protocol

Blocking
Send

Blocking
Receive

Unblocking
Protocol

Non
Blocking

Send

Non
Blocking
Receive

Methods for Interprocess Communication

 Blocking Protocol- The sender process is blocked till the message is

delivered to the receiver.

Blocking Send -The sender process is blocked until the message is

received by the receiving process or by the mailbox.

Blocking Receiver- The receiver blocks until a message is available.

 Non Blocking Protocol- In it, a sender continues the execution after

performing a send operation irrespective of whether the message is

delivered or not.

Non Blocking Send- The sending process sends the message and

resumes the operation.

Non Blocking Receive- The receiver receives either a valid message or

a null.

Methods for Interprocess Communication

2. Signals- It is a primitive form of communication that is

used to alert a process to occurrence of some event.

For example, In UNIX, two user defined signals that are

used by user processes are SIGUSR1 and SIGUSR2.

Methods for Interprocess Communication

3. Dynamic Data Exchange- It is a mean of transferring data
between two window applications.

Fig.4: DDE Conversation

Methods for Interprocess Communication

4. Object Linking and Embedding(OLE)- Its purpose is

to enable integration of application ‘objects’ from

different but compliant software packages.

 With linking, the source document contains only a

reference to the object.

With embedding, the object is actually stored as a part of

the data of the source document.

References

 Operating System Concepts by Charanjit Singh

 https://www.youtube.com/watch?v=Sa2-yABWEC4

 Nptel Video link-

https://www.youtube.com/watch?v=lcRqHwIn5Dk

https://www.youtube.com/watch?v=Sa2-yABWEC4
https://www.youtube.com/watch?v=lcRqHwIn5Dk

THANK YOU

•

•

•

• No reader can be delayed until a writer finishes its use of the resource.

• No writer should be blocked unless there are other active readers or writers.

• Once a reader entered, no other writers must remain waiting to access the

shared resource and vice versa.

Flow Diagram of Active Readers & Writers:

In this code, mutex and wrt are semaphores that are initialized

to 1. Also, rc is a variable that is initialized to 0. The mutex

semaphore ensures mutual exclusion and wrt handles the

writing mechanism and is common to the reader and writer

process code.

The variable rc denotes the number of readers accessing the

object. As soon as rc becomes 1, wait operation is used on wrt.

This means that a writer cannot access the object anymore.

After the read operation is done, rc is decremented. When re

becomes 0, signal operation is used on wrt. So a writer can

access the object now.

If a writer wants to access the object, wait operation

is performed on wrt.

After that no other writer can access the object.

When a writer is done writing into the object, signal

operation is performed on wrt.

•

•

•

Structure of the chopstick is shown below −

semaphore chopstick [5];

In the above structure, first wait operation is performed

on chopstick[i] and chopstick[(i+1) % 5]. This means that

the philosopher i has picked up the chopsticks on his

sides. Then the eating function is performed.

After that, signal operation is performed on chopstick[i]

and chopstick[(i+1) % 5]. This means that the

philosopher i has eaten and put down the chopsticks on

his sides. Then the philosopher goes back to thinking.

•

•

Semaphores, Producer

consumer problem

Significance of Hardware

Solution and Semaphores
• Semaphores are implemented in the machine independent code of the

microkernel.

• Semaphore is a protected variable (or abstract data type) and constitutes

the classic method for restricting access to shared resources

• Peterson Solution provides a good algorithmic description of solving the

critical-section problem and illustrates some of the complexities involved

in designing software that addresses the requirements of mutual

exclusion, progress, and bounded waiting. Mutual exclusion is preserved.

Semaphores
• A semaphore is a signaling mechanism and a thread that is

waiting on a semaphore can be signaled by another thread. This

is different than a mutex as the mutex can be signaled only by

the thread that called the wait function.

• A semaphore uses two atomic operations, wait and signal for

process synchronization.

• A Semaphore is an integer variable, which can be accessed

only through two operations wait() and signal().

There are two types of semaphores:

1. Binary Semaphores

2. Counting Semaphores

Binary Semaphores:

• They can only be either 0 or 1.

• They are also known as mutex locks, as the locks can provide
mutual exclusion. All the processes can share the same mutex
semaphore that is initialized to 1.

• Then, a process must wait until the lock becomes 0. Then, the
process can make the mutex semaphore 1 and start its critical
section.

• When it completes its critical section, it can reset the value of
mutex semaphore to 0 and some other process can enter its
critical section.

Counting Semaphores:

• They can have any value and are not restricted over a certain
domain. They can be used to control access to a resource that
has a limitation on the number of simultaneous accesses.

• The semaphore can be initialized to the number of instances of
the resource.

• Whenever a process wants to use that resource, it checks if the
number of remaining instances is more than zero, i.e., the
process has an instance available.

• Then, the process can enter its critical section thereby
decreasing the value of the counting semaphore by 1. After the
process is over with the use of the instance of the resource, it
can leave the critical section thereby adding 1 to the number of
available instances of the resource.

Look at two operations that can be used to access and change the

value of the semaphore variable:

Some point regarding P and V operation :

1. P operation is also called wait, sleep, or down operation, and V

operation is also called signal, wake-up, or up operation.

2. Both operations are atomic, and semaphore(s) is always

initialized to one. Here atomic means that variable on which

read, modify and update happens at the same time/moment with

no pre-emption i.e., in-between read, modify and update no other

operation is performed that may change the variable.

3. A critical section is surrounded by both operations to implement

process synchronization. See the below image. The critical

section of Process P is in between P and V operation.

Limitations :

1. One of the biggest limitations of semaphore is priority inversion.

2. Deadlock, suppose a process is trying to wake up another

process which is not in a sleep state. Therefore, a deadlock may

block indefinitely.

3. The operating system has to keep track of all calls to wait and to

signal the semaphore.

Peterson solution
Peterson’s Solution is a classical software-based solution to the

critical section problem.

In Peterson’s solution, we have two shared variables:

• Boolean flag[i] :Initialized to FALSE, initially no one is

interested in entering the critical section

• int turn : The process whose turn is to enter the critical section.

Peterson’s Solution preserves all three conditions :

• Mutual Exclusion is assured as only one process can access
the critical section at any time.

• Progress is also assured, as a process outside the critical
section does not block other processes from entering the
critical section.

• Bounded Waiting is preserved as every process gets a fair
chance.

Disadvantages of Peterson’s Solution

• It involves Busy waiting

• It is limited to 2 processes.

Mutex Locks

n Previous solutions are complicated and generally inaccessible to application
programmers

n OS designers build software tools to solve critical section problem

n Simplest is mutex lock

n Protect a critical section by first acquire() a lock then release() the
lock

l Boolean variable indicating if lock is available or not

n Calls to acquire() and release() must be atomic

l Usually implemented via hardware atomic instructions

n But this solution requires busy waiting

n This lock therefore called a spinlock

Monitors

 A high-level abstraction that provides a convenient and effective mechanism for
process synchronization

 Abstract data type, internal variables only accessible by code within the procedure

 Only one process may be active within the monitor at a time

 But not powerful enough to model some synchronization schemes

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }

}

Schematic view of a Monitor

Condition Variables

 condition x, y;

 Two operations are allowed on a condition variable:

 x.wait() – a process that invokes the operation is suspended until

x.signal()

 x.signal() – resumes one of processes (if any) that invoked x.wait()

 If no x.wait() on the variable, then it has no effect on the variable

Monitor with Condition Variables

Condition Variables Choices

 If process P invokes x.signal(), and process Q is suspended in

x.wait(), what should happen next?

 Both Q and P cannot execute in paralel. If Q is resumed, then P must wait

 Options include

 Signal and wait – P waits until Q either leaves the monitor or it waits for another

condition

 Signal and continue – Q waits until P either leaves the monitor or it waits for

another condition

 Both have pros and cons – language implementer can decide

 Monitors implemented in Concurrent Pascal compromise

 P executing signal immediately leaves the monitor, Q is resumed

 Implemented in other languages including Mesa, C#, Java

Producer Consumer

Problem
• The Producer-Consumer problem is a classic problem this is used

for multi-process synchronization i.e., synchronization between

more than one processes.

• In the producer-consumer problem, there is one Producer that is

producing something and there is one Consumer that is consuming

the products produced by the Producer. The producers and

consumers share the same memory buffer that is of fixed-size.

• The job of the Producer is to generate the data, put it into the buffer,

and again start generating data. While the job of the Consumer is to

consume the data from the buffer.

What's the problem here?

The following are the problems that might occur in the Producer-

Consumer:

• The producer should produce data only when the buffer is not

full. If the buffer is full, then the producer shouldn't be allowed to

put any data into the buffer.

• The consumer should consume data only when the buffer is not

empty. If the buffer is empty, then the consumer shouldn't be

allowed to take any data from the buffer.

• The producer and consumer should not access the buffer at the

same time.

What's the solution?

The above three problems can be solved with the help of semaphores

In the producer-consumer problem, we use three semaphore
variables:

1. Semaphore S: This semaphore variable is used to achieve
mutual exclusion between processes. By using this variable,
either Producer or Consumer will be allowed to use or access
the shared buffer at a particular time. This variable is set to 1
initially.

2. Semaphore E: This semaphore variable is used to define the
empty space in the buffer. Initially, it is set to the whole space of
the buffer i.e., "n" because the buffer is initially empty.

3. Semaphore F: This semaphore variable is used to define the
space that is filled by the producer. Initially, it is set to "0"
because there is no space filled by the producer initially.

By using the above three semaphore variables and by using

the wait() and signal() function, we can solve our

problem(the wait() function decreases the semaphore variable by 1 and

the signal() function increases the semaphore variable by 1).

References

• www.csee.wvu.edu/~jdmooney/classes/cs550/notes/tec
h/mutex/Peterson.html

• https://youtu.be/iMD1Z3f9ioI

• https://youtu.be/hh9g5kKl_aE

• https://youtu.be/eoGkJWgxurQ

• https://www.researchgate.net/publication/262408664_
Hardware_Implementation_of_Semaphore_Manageme
nt_in_Real-Time_Operating_Systems

http://www.csee.wvu.edu/~jdmooney/classes/cs550/notes/tech/mutex/Peterson.html
https://youtu.be/iMD1Z3f9ioI
https://youtu.be/hh9g5kKl_aE
https://youtu.be/eoGkJWgxurQ
https://www.researchgate.net/publication/262408664_Hardware_Implementation_of_Semaphore_Management_in_Real-Time_Operating_Systems

